This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnsscnp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cnsscnp | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsscnp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | cncnpi | ⊢ ( ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑓 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 3 | 2 | expcom | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝑓 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ) |
| 4 | 3 | ssrdv | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |