This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmpkgen | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐽 ∈ Top ) |
| 4 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∪ 𝐽 ∈ 𝐽 ) |
| 6 | simpr | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ ∪ 𝐽 ) | |
| 7 | 6 | snssd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → { 𝑥 } ⊆ ∪ 𝐽 ) |
| 8 | opnneiss | ⊢ ( ( 𝐽 ∈ Top ∧ ∪ 𝐽 ∈ 𝐽 ∧ { 𝑥 } ⊆ ∪ 𝐽 ) → ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | |
| 9 | 3 5 7 8 | syl3anc | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 10 | 1 | restid | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∪ 𝐽 ) = 𝐽 ) |
| 11 | 3 10 | syl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝐽 ↾t ∪ 𝐽 ) = 𝐽 ) |
| 12 | simpl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐽 ∈ Comp ) | |
| 13 | 11 12 | eqeltrd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝐽 ↾t ∪ 𝐽 ) ∈ Comp ) |
| 14 | oveq2 | ⊢ ( 𝑘 = ∪ 𝐽 → ( 𝐽 ↾t 𝑘 ) = ( 𝐽 ↾t ∪ 𝐽 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑘 = ∪ 𝐽 → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp ↔ ( 𝐽 ↾t ∪ 𝐽 ) ∈ Comp ) ) |
| 16 | 15 | rspcev | ⊢ ( ( ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝐽 ↾t ∪ 𝐽 ) ∈ Comp ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
| 17 | 9 13 16 | syl2anc | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
| 18 | 1 2 17 | llycmpkgen2 | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen ) |