This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmbr3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝐶ℋ 𝐵 ) ) | |
| 2 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) | |
| 3 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ 𝐵 ) ) |
| 5 | 2 4 | ineq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ 𝐵 ) ) ) |
| 6 | ineq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∩ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ 𝐵 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ) ) |
| 8 | 1 7 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝐶ℋ 𝐵 ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ 𝐵 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ) ) ) |
| 9 | breq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝐶ℋ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝐶ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) | |
| 10 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ 𝐵 ) = ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) | |
| 11 | 10 | ineq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ 𝐵 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) ) |
| 12 | ineq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) | |
| 13 | 11 12 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ 𝐵 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) ) |
| 14 | 9 13 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝐶ℋ 𝐵 ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ 𝐵 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝐶ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) ) ) |
| 15 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 16 | 15 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 17 | 15 | elimel | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∈ Cℋ |
| 18 | 16 17 | cmbr3i | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝐶ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) |
| 19 | 8 14 18 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) ) |