This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmbr3 | |- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A C_H B <-> if ( A e. CH , A , 0H ) C_H B ) ) |
|
| 2 | id | |- ( A = if ( A e. CH , A , 0H ) -> A = if ( A e. CH , A , 0H ) ) |
|
| 3 | fveq2 | |- ( A = if ( A e. CH , A , 0H ) -> ( _|_ ` A ) = ( _|_ ` if ( A e. CH , A , 0H ) ) ) |
|
| 4 | 3 | oveq1d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( _|_ ` A ) vH B ) = ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH B ) ) |
| 5 | 2 4 | ineq12d | |- ( A = if ( A e. CH , A , 0H ) -> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH B ) ) ) |
| 6 | ineq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A i^i B ) = ( if ( A e. CH , A , 0H ) i^i B ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) <-> ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH B ) ) = ( if ( A e. CH , A , 0H ) i^i B ) ) ) |
| 8 | 1 7 | bibi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) <-> ( if ( A e. CH , A , 0H ) C_H B <-> ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH B ) ) = ( if ( A e. CH , A , 0H ) i^i B ) ) ) ) |
| 9 | breq2 | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) C_H B <-> if ( A e. CH , A , 0H ) C_H if ( B e. CH , B , 0H ) ) ) |
|
| 10 | oveq2 | |- ( B = if ( B e. CH , B , 0H ) -> ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH B ) = ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH if ( B e. CH , B , 0H ) ) ) |
|
| 11 | 10 | ineq2d | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH B ) ) = ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH if ( B e. CH , B , 0H ) ) ) ) |
| 12 | ineq2 | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) i^i B ) = ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) ) |
|
| 13 | 11 12 | eqeq12d | |- ( B = if ( B e. CH , B , 0H ) -> ( ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH B ) ) = ( if ( A e. CH , A , 0H ) i^i B ) <-> ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH if ( B e. CH , B , 0H ) ) ) = ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) ) ) |
| 14 | 9 13 | bibi12d | |- ( B = if ( B e. CH , B , 0H ) -> ( ( if ( A e. CH , A , 0H ) C_H B <-> ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH B ) ) = ( if ( A e. CH , A , 0H ) i^i B ) ) <-> ( if ( A e. CH , A , 0H ) C_H if ( B e. CH , B , 0H ) <-> ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH if ( B e. CH , B , 0H ) ) ) = ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) ) ) ) |
| 15 | h0elch | |- 0H e. CH |
|
| 16 | 15 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 17 | 15 | elimel | |- if ( B e. CH , B , 0H ) e. CH |
| 18 | 16 17 | cmbr3i | |- ( if ( A e. CH , A , 0H ) C_H if ( B e. CH , B , 0H ) <-> ( if ( A e. CH , A , 0H ) i^i ( ( _|_ ` if ( A e. CH , A , 0H ) ) vH if ( B e. CH , B , 0H ) ) ) = ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) ) |
| 19 | 8 14 18 | dedth2h | |- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) ) |