This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero Hilbert lattice element commutes with every element. (Contributed by NM, 16-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cm0 | ⊢ ( 𝐴 ∈ Cℋ → 0ℋ 𝐶ℋ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 2 | 1 | choccli | ⊢ ( ⊥ ‘ 0ℋ ) ∈ Cℋ |
| 3 | chjcl | ⊢ ( ( ( ⊥ ‘ 0ℋ ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∈ Cℋ ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ Cℋ → ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∈ Cℋ ) |
| 5 | chm0 | ⊢ ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∈ Cℋ → ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∩ 0ℋ ) = 0ℋ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ Cℋ → ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∩ 0ℋ ) = 0ℋ ) |
| 7 | chm0 | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ 0ℋ ) = 0ℋ ) | |
| 8 | 6 7 | eqtr4d | ⊢ ( 𝐴 ∈ Cℋ → ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∩ 0ℋ ) = ( 𝐴 ∩ 0ℋ ) ) |
| 9 | incom | ⊢ ( 0ℋ ∩ ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ) = ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∩ 0ℋ ) | |
| 10 | incom | ⊢ ( 0ℋ ∩ 𝐴 ) = ( 𝐴 ∩ 0ℋ ) | |
| 11 | 8 9 10 | 3eqtr4g | ⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ∩ ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ) = ( 0ℋ ∩ 𝐴 ) ) |
| 12 | cmbr3 | ⊢ ( ( 0ℋ ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 0ℋ 𝐶ℋ 𝐴 ↔ ( 0ℋ ∩ ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ) = ( 0ℋ ∩ 𝐴 ) ) ) | |
| 13 | 1 12 | mpan | ⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ 𝐶ℋ 𝐴 ↔ ( 0ℋ ∩ ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ) = ( 0ℋ ∩ 𝐴 ) ) ) |
| 14 | 11 13 | mpbird | ⊢ ( 𝐴 ∈ Cℋ → 0ℋ 𝐶ℋ 𝐴 ) |