This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing A commutes with B . Definition of commutes in Kalmbach p. 20. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmbr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ Cℋ ↔ 𝐴 ∈ Cℋ ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ) ) |
| 3 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 4 | ineq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝑦 ) ) | |
| 5 | ineq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) | |
| 6 | 4 5 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) |
| 7 | 3 6 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ↔ 𝐴 = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ) |
| 8 | 2 7 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝐴 = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ) ) |
| 9 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ Cℋ ↔ 𝐵 ∈ Cℋ ) ) | |
| 10 | 9 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) ) |
| 11 | ineq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐵 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ 𝐵 ) ) | |
| 13 | 12 | ineq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 14 | 11 13 | oveq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 16 | 10 15 | anbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝐴 = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
| 17 | df-cm | ⊢ 𝐶ℋ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) } | |
| 18 | 8 16 17 | brabg | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
| 19 | 18 | bianabs | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |