This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing A commutes with B . Definition of commutes in Kalmbach p. 20. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmbr | |- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( x = A -> ( x e. CH <-> A e. CH ) ) |
|
| 2 | 1 | anbi1d | |- ( x = A -> ( ( x e. CH /\ y e. CH ) <-> ( A e. CH /\ y e. CH ) ) ) |
| 3 | id | |- ( x = A -> x = A ) |
|
| 4 | ineq1 | |- ( x = A -> ( x i^i y ) = ( A i^i y ) ) |
|
| 5 | ineq1 | |- ( x = A -> ( x i^i ( _|_ ` y ) ) = ( A i^i ( _|_ ` y ) ) ) |
|
| 6 | 4 5 | oveq12d | |- ( x = A -> ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) |
| 7 | 3 6 | eqeq12d | |- ( x = A -> ( x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) <-> A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) ) |
| 8 | 2 7 | anbi12d | |- ( x = A -> ( ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) <-> ( ( A e. CH /\ y e. CH ) /\ A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) ) ) |
| 9 | eleq1 | |- ( y = B -> ( y e. CH <-> B e. CH ) ) |
|
| 10 | 9 | anbi2d | |- ( y = B -> ( ( A e. CH /\ y e. CH ) <-> ( A e. CH /\ B e. CH ) ) ) |
| 11 | ineq2 | |- ( y = B -> ( A i^i y ) = ( A i^i B ) ) |
|
| 12 | fveq2 | |- ( y = B -> ( _|_ ` y ) = ( _|_ ` B ) ) |
|
| 13 | 12 | ineq2d | |- ( y = B -> ( A i^i ( _|_ ` y ) ) = ( A i^i ( _|_ ` B ) ) ) |
| 14 | 11 13 | oveq12d | |- ( y = B -> ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 15 | 14 | eqeq2d | |- ( y = B -> ( A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) |
| 16 | 10 15 | anbi12d | |- ( y = B -> ( ( ( A e. CH /\ y e. CH ) /\ A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) <-> ( ( A e. CH /\ B e. CH ) /\ A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) ) |
| 17 | df-cm | |- C_H = { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) } |
|
| 18 | 8 16 17 | brabg | |- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> ( ( A e. CH /\ B e. CH ) /\ A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) ) |
| 19 | 18 | bianabs | |- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) |