This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed walks of a fixed length represented by walks (as words) and the set of closed walks (as words) of the fixed length are equinumerous. (Contributed by AV, 5-Jun-2022) (Proof shortened by AV, 2-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlken | ⊢ ( 𝑁 ∈ ℕ → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ≈ ( 𝑁 ClWWalksN 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( 𝑁 WWalksN 𝐺 ) ∈ V | |
| 2 | 1 | rabex | ⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ∈ V |
| 3 | ovex | ⊢ ( 𝑁 ClWWalksN 𝐺 ) ∈ V | |
| 4 | eqid | ⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } | |
| 5 | eqid | ⊢ ( 𝑐 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ↦ ( 𝑐 prefix 𝑁 ) ) = ( 𝑐 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ↦ ( 𝑐 prefix 𝑁 ) ) | |
| 6 | 4 5 | clwwlkf1o | ⊢ ( 𝑁 ∈ ℕ → ( 𝑐 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ↦ ( 𝑐 prefix 𝑁 ) ) : { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } –1-1-onto→ ( 𝑁 ClWWalksN 𝐺 ) ) |
| 7 | f1oen2g | ⊢ ( ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ∈ V ∧ ( 𝑁 ClWWalksN 𝐺 ) ∈ V ∧ ( 𝑐 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ↦ ( 𝑐 prefix 𝑁 ) ) : { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } –1-1-onto→ ( 𝑁 ClWWalksN 𝐺 ) ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ≈ ( 𝑁 ClWWalksN 𝐺 ) ) | |
| 8 | 2 3 6 7 | mp3an12i | ⊢ ( 𝑁 ∈ ℕ → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ≈ ( 𝑁 ClWWalksN 𝐺 ) ) |