This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed walks of a fixed length represented by walks (as words) and the set of closed walks (as words) of the fixed length are equinumerous. (Contributed by AV, 5-Jun-2022) (Proof shortened by AV, 2-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlken | |- ( N e. NN -> { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } ~~ ( N ClWWalksN G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |- ( N WWalksN G ) e. _V |
|
| 2 | 1 | rabex | |- { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } e. _V |
| 3 | ovex | |- ( N ClWWalksN G ) e. _V |
|
| 4 | eqid | |- { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
|
| 5 | eqid | |- ( c e. { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |-> ( c prefix N ) ) = ( c e. { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |-> ( c prefix N ) ) |
|
| 6 | 4 5 | clwwlkf1o | |- ( N e. NN -> ( c e. { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |-> ( c prefix N ) ) : { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } -1-1-onto-> ( N ClWWalksN G ) ) |
| 7 | f1oen2g | |- ( ( { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } e. _V /\ ( N ClWWalksN G ) e. _V /\ ( c e. { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |-> ( c prefix N ) ) : { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } -1-1-onto-> ( N ClWWalksN G ) ) -> { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } ~~ ( N ClWWalksN G ) ) |
|
| 8 | 2 3 6 7 | mp3an12i | |- ( N e. NN -> { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } ~~ ( N ClWWalksN G ) ) |