This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obtaining a closed walk (as word) by appending the first symbol to the word representing a walk. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 22-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlknwwlkncl | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknnn | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑁 ∈ ℕ ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 2 | clwwlknbp | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 4 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 5 | 2 4 | clwwlknp | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 6 | 3simpc | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 8 | eqid | ⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } | |
| 9 | 8 | clwwlkel | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ) |
| 10 | 1 3 7 9 | syl3anc | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } ) |