This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex modules
clmvsdi
Metamath Proof Explorer
Description: Distributive law for scalar product (left-distributivity). ( lmodvsdi analog.) (Contributed by NM , 3-Nov-2006) (Revised by AV , 28-Sep-2021)
Ref
Expression
Hypotheses
clmvscl.v
⊢ V = Base W
clmvscl.f
⊢ F = Scalar ⁡ W
clmvscl.s
⊢ · ˙ = ⋅ W
clmvscl.k
⊢ K = Base F
clmvsdir.a
⊢ + ˙ = + W
Assertion
clmvsdi
⊢ W ∈ CMod ∧ A ∈ K ∧ X ∈ V ∧ Y ∈ V → A · ˙ X + ˙ Y = A · ˙ X + ˙ A · ˙ Y
Proof
Step
Hyp
Ref
Expression
1
clmvscl.v
⊢ V = Base W
2
clmvscl.f
⊢ F = Scalar ⁡ W
3
clmvscl.s
⊢ · ˙ = ⋅ W
4
clmvscl.k
⊢ K = Base F
5
clmvsdir.a
⊢ + ˙ = + W
6
clmlmod
⊢ W ∈ CMod → W ∈ LMod
7
1 5 2 3 4
lmodvsdi
⊢ W ∈ LMod ∧ A ∈ K ∧ X ∈ V ∧ Y ∈ V → A · ˙ X + ˙ Y = A · ˙ X + ˙ A · ˙ Y
8
6 7
sylan
⊢ W ∈ CMod ∧ A ∈ K ∧ X ∈ V ∧ Y ∈ V → A · ˙ X + ˙ Y = A · ˙ X + ˙ A · ˙ Y