This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008) (Revised by AV, 3-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmopfne.t | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| clmopfne.a | ⊢ + = ( +𝑓 ‘ 𝑊 ) | ||
| Assertion | clmopfne | ⊢ ( 𝑊 ∈ ℂMod → + ≠ · ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmopfne.t | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| 2 | clmopfne.a | ⊢ + = ( +𝑓 ‘ 𝑊 ) | |
| 3 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 4 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 5 | 4 | a1i | ⊢ ( 𝑊 ∈ ℂMod → 1 ≠ 0 ) |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 7 | 6 | clm1 | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 | 6 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | 5 7 8 | 3netr3d | ⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 12 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 14 | 1 2 10 6 11 12 13 | lmodfopne | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → + ≠ · ) |
| 15 | 3 9 14 | syl2anc | ⊢ ( 𝑊 ∈ ℂMod → + ≠ · ) |