This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatlem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| clatlem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| clatlem.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| Assertion | clatlem | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatlem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | clatlem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | clatlem.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | simpl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝐾 ∈ CLat ) | |
| 5 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 6 | 5 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
| 7 | 6 | biimpri | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ 𝒫 𝐵 ) |
| 9 | 1 2 3 | isclat | ⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
| 10 | 9 | biimpi | ⊢ ( 𝐾 ∈ CLat → ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
| 12 | 11 | simprld | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → dom 𝑈 = 𝒫 𝐵 ) |
| 13 | 8 12 | eleqtrrd | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝑈 ) |
| 14 | 1 2 4 13 | lubcl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
| 15 | 11 | simprrd | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → dom 𝐺 = 𝒫 𝐵 ) |
| 16 | 8 15 | eleqtrrd | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝐺 ) |
| 17 | 1 3 4 16 | glbcl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 18 | 14 17 | jca | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) ) |