This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatlem.b | |- B = ( Base ` K ) |
|
| clatlem.u | |- U = ( lub ` K ) |
||
| clatlem.g | |- G = ( glb ` K ) |
||
| Assertion | clatlem | |- ( ( K e. CLat /\ S C_ B ) -> ( ( U ` S ) e. B /\ ( G ` S ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatlem.b | |- B = ( Base ` K ) |
|
| 2 | clatlem.u | |- U = ( lub ` K ) |
|
| 3 | clatlem.g | |- G = ( glb ` K ) |
|
| 4 | simpl | |- ( ( K e. CLat /\ S C_ B ) -> K e. CLat ) |
|
| 5 | 1 | fvexi | |- B e. _V |
| 6 | 5 | elpw2 | |- ( S e. ~P B <-> S C_ B ) |
| 7 | 6 | biimpri | |- ( S C_ B -> S e. ~P B ) |
| 8 | 7 | adantl | |- ( ( K e. CLat /\ S C_ B ) -> S e. ~P B ) |
| 9 | 1 2 3 | isclat | |- ( K e. CLat <-> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
| 10 | 9 | biimpi | |- ( K e. CLat -> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
| 11 | 10 | adantr | |- ( ( K e. CLat /\ S C_ B ) -> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
| 12 | 11 | simprld | |- ( ( K e. CLat /\ S C_ B ) -> dom U = ~P B ) |
| 13 | 8 12 | eleqtrrd | |- ( ( K e. CLat /\ S C_ B ) -> S e. dom U ) |
| 14 | 1 2 4 13 | lubcl | |- ( ( K e. CLat /\ S C_ B ) -> ( U ` S ) e. B ) |
| 15 | 11 | simprrd | |- ( ( K e. CLat /\ S C_ B ) -> dom G = ~P B ) |
| 16 | 8 15 | eleqtrrd | |- ( ( K e. CLat /\ S C_ B ) -> S e. dom G ) |
| 17 | 1 3 4 16 | glbcl | |- ( ( K e. CLat /\ S C_ B ) -> ( G ` S ) e. B ) |
| 18 | 14 17 | jca | |- ( ( K e. CLat /\ S C_ B ) -> ( ( U ` S ) e. B /\ ( G ` S ) e. B ) ) |