This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the complex conjugate function. See cjcli for its closure and cjval for its value. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cj | ⊢ ∗ = ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccj | ⊢ ∗ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cc | ⊢ ℂ | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | caddc | ⊢ + | |
| 6 | 3 | cv | ⊢ 𝑦 |
| 7 | 4 6 5 | co | ⊢ ( 𝑥 + 𝑦 ) |
| 8 | cr | ⊢ ℝ | |
| 9 | 7 8 | wcel | ⊢ ( 𝑥 + 𝑦 ) ∈ ℝ |
| 10 | ci | ⊢ i | |
| 11 | cmul | ⊢ · | |
| 12 | cmin | ⊢ − | |
| 13 | 4 6 12 | co | ⊢ ( 𝑥 − 𝑦 ) |
| 14 | 10 13 11 | co | ⊢ ( i · ( 𝑥 − 𝑦 ) ) |
| 15 | 14 8 | wcel | ⊢ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ |
| 16 | 9 15 | wa | ⊢ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) |
| 17 | 16 3 2 | crio | ⊢ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) |
| 18 | 1 2 17 | cmpt | ⊢ ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) ) |
| 19 | 0 18 | wceq | ⊢ ∗ = ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) ) |