This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjval | |- ( A e. CC -> ( * ` A ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( y = A -> ( y + x ) = ( A + x ) ) |
|
| 2 | 1 | eleq1d | |- ( y = A -> ( ( y + x ) e. RR <-> ( A + x ) e. RR ) ) |
| 3 | oveq1 | |- ( y = A -> ( y - x ) = ( A - x ) ) |
|
| 4 | 3 | oveq2d | |- ( y = A -> ( _i x. ( y - x ) ) = ( _i x. ( A - x ) ) ) |
| 5 | 4 | eleq1d | |- ( y = A -> ( ( _i x. ( y - x ) ) e. RR <-> ( _i x. ( A - x ) ) e. RR ) ) |
| 6 | 2 5 | anbi12d | |- ( y = A -> ( ( ( y + x ) e. RR /\ ( _i x. ( y - x ) ) e. RR ) <-> ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 7 | 6 | riotabidv | |- ( y = A -> ( iota_ x e. CC ( ( y + x ) e. RR /\ ( _i x. ( y - x ) ) e. RR ) ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 8 | df-cj | |- * = ( y e. CC |-> ( iota_ x e. CC ( ( y + x ) e. RR /\ ( _i x. ( y - x ) ) e. RR ) ) ) |
|
| 9 | riotaex | |- ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( A e. CC -> ( * ` A ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |