This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 2-Jul-2005) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjreb | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 6 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 7 | 3 5 6 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 8 | 2 7 | negsubd | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + - ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 9 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) | |
| 10 | 3 5 9 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 11 | 10 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + - ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 12 | remim | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 13 | 8 11 12 | 3eqtr4rd | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) |
| 14 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) = 𝐴 ↔ ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 16 | 5 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 17 | mulcl | ⊢ ( ( i ∈ ℂ ∧ - ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 18 | 3 16 17 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · - ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 19 | 2 18 7 | addcand | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ↔ ( i · - ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 20 | eqcom | ⊢ ( - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ↔ ( ℑ ‘ 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) | |
| 21 | 5 | eqnegd | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) = - ( ℑ ‘ 𝐴 ) ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 22 | 20 21 | bitrid | ⊢ ( 𝐴 ∈ ℂ → ( - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 23 | ine0 | ⊢ i ≠ 0 | |
| 24 | 3 23 | pm3.2i | ⊢ ( i ∈ ℂ ∧ i ≠ 0 ) |
| 25 | 24 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( i ∈ ℂ ∧ i ≠ 0 ) ) |
| 26 | mulcan | ⊢ ( ( - ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( i · - ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ↔ - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ) ) | |
| 27 | 16 5 25 26 | syl3anc | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ↔ - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ) ) |
| 28 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 29 | 22 27 28 | 3bitr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ↔ 𝐴 ∈ ℝ ) ) |
| 30 | 15 19 29 | 3bitrrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) ) |