This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of Gleason p. 133. (Contributed by NM, 21-Jan-2007) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcj | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) = ( 2 · ( ℜ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reval | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ℜ ‘ 𝐴 ) ) = ( 2 · ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) ) |
| 3 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 5 | 3 4 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 6 | 2cn | ⊢ 2 ∈ ℂ | |
| 7 | 2ne0 | ⊢ 2 ≠ 0 | |
| 8 | divcan2 | ⊢ ( ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) = ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) | |
| 9 | 6 7 8 | mp3an23 | ⊢ ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ → ( 2 · ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) = ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) |
| 10 | 5 9 | syl | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) = ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) |
| 11 | 2 10 | eqtr2d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) = ( 2 · ( ℜ ‘ 𝐴 ) ) ) |