This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number times its conjugate. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjmulval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 3 | 2 | sqvald | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) = ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) ) |
| 4 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 6 | 5 | sqvald | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) = ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) |
| 7 | 3 6 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 8 | ipcnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 9 | 8 | anidms | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐴 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐴 ) ) ) ) |
| 10 | cjmulrcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 11 | rere | ⊢ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 13 | 7 9 12 | 3eqtr2rd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |