This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number times its conjugate. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjmulval | |- ( A e. CC -> ( A x. ( * ` A ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 3 | 2 | sqvald | |- ( A e. CC -> ( ( Re ` A ) ^ 2 ) = ( ( Re ` A ) x. ( Re ` A ) ) ) |
| 4 | imcl | |- ( A e. CC -> ( Im ` A ) e. RR ) |
|
| 5 | 4 | recnd | |- ( A e. CC -> ( Im ` A ) e. CC ) |
| 6 | 5 | sqvald | |- ( A e. CC -> ( ( Im ` A ) ^ 2 ) = ( ( Im ` A ) x. ( Im ` A ) ) ) |
| 7 | 3 6 | oveq12d | |- ( A e. CC -> ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) = ( ( ( Re ` A ) x. ( Re ` A ) ) + ( ( Im ` A ) x. ( Im ` A ) ) ) ) |
| 8 | ipcnval | |- ( ( A e. CC /\ A e. CC ) -> ( Re ` ( A x. ( * ` A ) ) ) = ( ( ( Re ` A ) x. ( Re ` A ) ) + ( ( Im ` A ) x. ( Im ` A ) ) ) ) |
|
| 9 | 8 | anidms | |- ( A e. CC -> ( Re ` ( A x. ( * ` A ) ) ) = ( ( ( Re ` A ) x. ( Re ` A ) ) + ( ( Im ` A ) x. ( Im ` A ) ) ) ) |
| 10 | cjmulrcl | |- ( A e. CC -> ( A x. ( * ` A ) ) e. RR ) |
|
| 11 | rere | |- ( ( A x. ( * ` A ) ) e. RR -> ( Re ` ( A x. ( * ` A ) ) ) = ( A x. ( * ` A ) ) ) |
|
| 12 | 10 11 | syl | |- ( A e. CC -> ( Re ` ( A x. ( * ` A ) ) ) = ( A x. ( * ` A ) ) ) |
| 13 | 7 9 12 | 3eqtr2rd | |- ( A e. CC -> ( A x. ( * ` A ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) |