This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ipcnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) | |
| 2 | remul | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 4 | recj | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) = ( ℜ ‘ 𝐵 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) = ( ℜ ‘ 𝐵 ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) ) = ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |
| 7 | imcj | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) = - ( ℑ ‘ 𝐵 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) = - ( ℑ ‘ 𝐵 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) = ( ( ℑ ‘ 𝐴 ) · - ( ℑ ‘ 𝐵 ) ) ) |
| 10 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 11 | 10 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 12 | imcl | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) | |
| 13 | 12 | recnd | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 14 | mulneg2 | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · - ( ℑ ‘ 𝐵 ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) | |
| 15 | 11 13 14 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · - ( ℑ ‘ 𝐵 ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 16 | 9 15 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 17 | 6 16 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 18 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 19 | 18 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 20 | recl | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) | |
| 21 | 20 | recnd | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 22 | mulcl | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 23 | 19 21 22 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 24 | mulcl | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 25 | 11 13 24 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 26 | 23 25 | subnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 27 | 3 17 26 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |