This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpfl | ⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ ( ⌊ ‘ 𝐴 ) ) = ( ψ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flidm | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) = ( ⌊ ‘ 𝐴 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( 1 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 3 | 2 | sumeq1d | ⊢ ( 𝐴 ∈ ℝ → Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ( Λ ‘ 𝑥 ) = Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑥 ) ) |
| 4 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | chpval | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ψ ‘ ( ⌊ ‘ 𝐴 ) ) = Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ( Λ ‘ 𝑥 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ ( ⌊ ‘ 𝐴 ) ) = Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ( Λ ‘ 𝑥 ) ) |
| 7 | chpval | ⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑥 ) ) | |
| 8 | 3 6 7 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ ( ⌊ ‘ 𝐴 ) ) = ( ψ ‘ 𝐴 ) ) |