This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of the empty set. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsup0 | ⊢ ( ∨ℋ ‘ ∅ ) = 0ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | ⊢ ∅ ⊆ { 0ℋ } | |
| 2 | 0ss | ⊢ ∅ ⊆ Cℋ | |
| 3 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 4 | snssi | ⊢ ( 0ℋ ∈ Cℋ → { 0ℋ } ⊆ Cℋ ) | |
| 5 | 3 4 | ax-mp | ⊢ { 0ℋ } ⊆ Cℋ |
| 6 | chsupss | ⊢ ( ( ∅ ⊆ Cℋ ∧ { 0ℋ } ⊆ Cℋ ) → ( ∅ ⊆ { 0ℋ } → ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) ) ) | |
| 7 | 2 5 6 | mp2an | ⊢ ( ∅ ⊆ { 0ℋ } → ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) ) |
| 8 | 1 7 | ax-mp | ⊢ ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) |
| 9 | chsupsn | ⊢ ( 0ℋ ∈ Cℋ → ( ∨ℋ ‘ { 0ℋ } ) = 0ℋ ) | |
| 10 | 3 9 | ax-mp | ⊢ ( ∨ℋ ‘ { 0ℋ } ) = 0ℋ |
| 11 | 8 10 | sseqtri | ⊢ ( ∨ℋ ‘ ∅ ) ⊆ 0ℋ |
| 12 | chsupcl | ⊢ ( ∅ ⊆ Cℋ → ( ∨ℋ ‘ ∅ ) ∈ Cℋ ) | |
| 13 | 2 12 | ax-mp | ⊢ ( ∨ℋ ‘ ∅ ) ∈ Cℋ |
| 14 | 13 | chle0i | ⊢ ( ( ∨ℋ ‘ ∅ ) ⊆ 0ℋ ↔ ( ∨ℋ ‘ ∅ ) = 0ℋ ) |
| 15 | 11 14 | mpbi | ⊢ ( ∨ℋ ‘ ∅ ) = 0ℋ |