This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of the empty set. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsup0 | |- ( \/H ` (/) ) = 0H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ { 0H } |
|
| 2 | 0ss | |- (/) C_ CH |
|
| 3 | h0elch | |- 0H e. CH |
|
| 4 | snssi | |- ( 0H e. CH -> { 0H } C_ CH ) |
|
| 5 | 3 4 | ax-mp | |- { 0H } C_ CH |
| 6 | chsupss | |- ( ( (/) C_ CH /\ { 0H } C_ CH ) -> ( (/) C_ { 0H } -> ( \/H ` (/) ) C_ ( \/H ` { 0H } ) ) ) |
|
| 7 | 2 5 6 | mp2an | |- ( (/) C_ { 0H } -> ( \/H ` (/) ) C_ ( \/H ` { 0H } ) ) |
| 8 | 1 7 | ax-mp | |- ( \/H ` (/) ) C_ ( \/H ` { 0H } ) |
| 9 | chsupsn | |- ( 0H e. CH -> ( \/H ` { 0H } ) = 0H ) |
|
| 10 | 3 9 | ax-mp | |- ( \/H ` { 0H } ) = 0H |
| 11 | 8 10 | sseqtri | |- ( \/H ` (/) ) C_ 0H |
| 12 | chsupcl | |- ( (/) C_ CH -> ( \/H ` (/) ) e. CH ) |
|
| 13 | 2 12 | ax-mp | |- ( \/H ` (/) ) e. CH |
| 14 | 13 | chle0i | |- ( ( \/H ` (/) ) C_ 0H <-> ( \/H ` (/) ) = 0H ) |
| 15 | 11 14 | mpbi | |- ( \/H ` (/) ) = 0H |