This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law for strict ordering. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpsscon2 | |- ( ( A e. CH /\ B e. CH ) -> ( A C. ( _|_ ` B ) <-> B C. ( _|_ ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | |- ( B e. CH -> ( _|_ ` B ) e. CH ) |
|
| 2 | chpsscon3 | |- ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( A C. ( _|_ ` B ) <-> ( _|_ ` ( _|_ ` B ) ) C. ( _|_ ` A ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CH /\ B e. CH ) -> ( A C. ( _|_ ` B ) <-> ( _|_ ` ( _|_ ` B ) ) C. ( _|_ ` A ) ) ) |
| 4 | ococ | |- ( B e. CH -> ( _|_ ` ( _|_ ` B ) ) = B ) |
|
| 5 | 4 | adantl | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` B ) ) = B ) |
| 6 | 5 | psseq1d | |- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` ( _|_ ` B ) ) C. ( _|_ ` A ) <-> B C. ( _|_ ` A ) ) ) |
| 7 | 3 6 | bitrd | |- ( ( A e. CH /\ B e. CH ) -> ( A C. ( _|_ ` B ) <-> B C. ( _|_ ` A ) ) ) |