This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of a closed subspace and its orthocomplement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chocin | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) | |
| 2 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) | |
| 3 | 1 2 | ineq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) |
| 5 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 6 | 5 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 7 | 6 | chocini | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ |
| 8 | 4 7 | dedth | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |