This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of a closed subspace and its orthocomplement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chocin | |- ( A e. CH -> ( A i^i ( _|_ ` A ) ) = 0H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( A = if ( A e. CH , A , 0H ) -> A = if ( A e. CH , A , 0H ) ) |
|
| 2 | fveq2 | |- ( A = if ( A e. CH , A , 0H ) -> ( _|_ ` A ) = ( _|_ ` if ( A e. CH , A , 0H ) ) ) |
|
| 3 | 1 2 | ineq12d | |- ( A = if ( A e. CH , A , 0H ) -> ( A i^i ( _|_ ` A ) ) = ( if ( A e. CH , A , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) ) |
| 4 | 3 | eqeq1d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A i^i ( _|_ ` A ) ) = 0H <-> ( if ( A e. CH , A , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) ) |
| 5 | h0elch | |- 0H e. CH |
|
| 6 | 5 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 7 | 6 | chocini | |- ( if ( A e. CH , A , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H |
| 8 | 4 7 | dedth | |- ( A e. CH -> ( A i^i ( _|_ ` A ) ) = 0H ) |