This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subspace less than its orthocomplement is zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chssoc | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 = 0ℋ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 2 | sslin | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → ( 𝐴 ∩ 𝐴 ) ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ) | |
| 3 | 1 2 | eqsstrrid | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ) |
| 4 | chocin | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) | |
| 5 | 4 | sseq2d | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ↔ 𝐴 ⊆ 0ℋ ) ) |
| 6 | chle0 | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) | |
| 7 | 5 6 | bitrd | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ↔ 𝐴 = 0ℋ ) ) |
| 8 | 3 7 | imbitrid | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 = 0ℋ ) ) |
| 9 | simpr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ ) → 𝐴 = 0ℋ ) | |
| 10 | choccl | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) | |
| 11 | ch0le | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ → 0ℋ ⊆ ( ⊥ ‘ 𝐴 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ∈ Cℋ → 0ℋ ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ ) → 0ℋ ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 14 | 9 13 | eqsstrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ ) → 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 15 | 14 | ex | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 = 0ℋ → 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 16 | 8 15 | impbid | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 = 0ℋ ) ) |