This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for Hilbert lattice join. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| chjass.3 | ⊢ 𝐶 ∈ Cℋ | ||
| Assertion | chjassi | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | chjass.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | inass | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) ) | |
| 5 | 1 2 | chdmj1i | ⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
| 6 | 5 | ineq1i | ⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) |
| 7 | 2 3 | chdmj1i | ⊢ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) |
| 8 | 7 | ineq2i | ⊢ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) ) |
| 9 | 4 6 8 | 3eqtr4i | ⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| 10 | 9 | fveq2i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) |
| 11 | 1 2 | chjcli | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 12 | 11 3 | chdmm4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) |
| 13 | 2 3 | chjcli | ⊢ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ |
| 14 | 1 13 | chdmm4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) |
| 15 | 10 12 14 | 3eqtr3i | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) |