This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chlejb1i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 4 | 1 2 2 | chlubii | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ) |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ) |
| 6 | 2 1 | chub2i | ⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 7 | 5 6 | jctir | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 8 | eqss | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) |
| 10 | 1 2 | chub1i | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 11 | eqimss | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ) | |
| 12 | 10 11 | sstrid | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) |
| 13 | 9 12 | impbii | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) |