This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chlejb1 | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( A vH B ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A C_ B <-> if ( A e. CH , A , 0H ) C_ B ) ) |
|
| 2 | oveq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A vH B ) = ( if ( A e. CH , A , 0H ) vH B ) ) |
|
| 3 | 2 | eqeq1d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A vH B ) = B <-> ( if ( A e. CH , A , 0H ) vH B ) = B ) ) |
| 4 | 1 3 | bibi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A C_ B <-> ( A vH B ) = B ) <-> ( if ( A e. CH , A , 0H ) C_ B <-> ( if ( A e. CH , A , 0H ) vH B ) = B ) ) ) |
| 5 | sseq2 | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) C_ B <-> if ( A e. CH , A , 0H ) C_ if ( B e. CH , B , 0H ) ) ) |
|
| 6 | oveq2 | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) vH B ) = ( if ( A e. CH , A , 0H ) vH if ( B e. CH , B , 0H ) ) ) |
|
| 7 | id | |- ( B = if ( B e. CH , B , 0H ) -> B = if ( B e. CH , B , 0H ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( B = if ( B e. CH , B , 0H ) -> ( ( if ( A e. CH , A , 0H ) vH B ) = B <-> ( if ( A e. CH , A , 0H ) vH if ( B e. CH , B , 0H ) ) = if ( B e. CH , B , 0H ) ) ) |
| 9 | 5 8 | bibi12d | |- ( B = if ( B e. CH , B , 0H ) -> ( ( if ( A e. CH , A , 0H ) C_ B <-> ( if ( A e. CH , A , 0H ) vH B ) = B ) <-> ( if ( A e. CH , A , 0H ) C_ if ( B e. CH , B , 0H ) <-> ( if ( A e. CH , A , 0H ) vH if ( B e. CH , B , 0H ) ) = if ( B e. CH , B , 0H ) ) ) ) |
| 10 | h0elch | |- 0H e. CH |
|
| 11 | 10 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 12 | 10 | elimel | |- if ( B e. CH , B , 0H ) e. CH |
| 13 | 11 12 | chlejb1i | |- ( if ( A e. CH , A , 0H ) C_ if ( B e. CH , B , 0H ) <-> ( if ( A e. CH , A , 0H ) vH if ( B e. CH , B , 0H ) ) = if ( B e. CH , B , 0H ) ) |
| 14 | 4 9 13 | dedth2h | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( A vH B ) = B ) ) |