This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two Hilbert lattice elements are zero iff their join is zero. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chj00i | ⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ↔ ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | oveq12 | ⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 0ℋ ∨ℋ 0ℋ ) ) | |
| 4 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 5 | 4 | chj0i | ⊢ ( 0ℋ ∨ℋ 0ℋ ) = 0ℋ |
| 6 | 3 5 | eqtrdi | ⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ ) |
| 7 | 1 2 | chub1i | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 8 | sseq2 | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ 𝐴 ⊆ 0ℋ ) ) | |
| 9 | 7 8 | mpbii | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → 𝐴 ⊆ 0ℋ ) |
| 10 | 1 | chle0i | ⊢ ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) |
| 11 | 9 10 | sylib | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → 𝐴 = 0ℋ ) |
| 12 | 2 1 | chub2i | ⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 13 | sseq2 | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ 𝐵 ⊆ 0ℋ ) ) | |
| 14 | 12 13 | mpbii | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → 𝐵 ⊆ 0ℋ ) |
| 15 | 2 | chle0i | ⊢ ( 𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ ) |
| 16 | 14 15 | sylib | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → 𝐵 = 0ℋ ) |
| 17 | 11 16 | jca | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ) |
| 18 | 6 17 | impbii | ⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ↔ ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ ) |