This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice absorption law. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 16-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chabs2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chub1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 2 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | 1 2 | jctil | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 4 | ssin | ⊢ ( ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 6 | inss1 | ⊢ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ 𝐴 | |
| 7 | 5 6 | jctil | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 8 | eqss | ⊢ ( ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 ↔ ( ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 ) |