This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgsex2g.1 | |- ( ( x = A /\ y = B ) -> ch ) |
|
| cgsex2g.2 | |- ( ch -> ( ph <-> ps ) ) |
||
| Assertion | cgsex2g | |- ( ( A e. V /\ B e. W ) -> ( E. x E. y ( ch /\ ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex2g.1 | |- ( ( x = A /\ y = B ) -> ch ) |
|
| 2 | cgsex2g.2 | |- ( ch -> ( ph <-> ps ) ) |
|
| 3 | 2 | biimpa | |- ( ( ch /\ ph ) -> ps ) |
| 4 | 3 | exlimivv | |- ( E. x E. y ( ch /\ ph ) -> ps ) |
| 5 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 6 | elisset | |- ( B e. W -> E. y y = B ) |
|
| 7 | 5 6 | anim12i | |- ( ( A e. V /\ B e. W ) -> ( E. x x = A /\ E. y y = B ) ) |
| 8 | exdistrv | |- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( A e. V /\ B e. W ) -> E. x E. y ( x = A /\ y = B ) ) |
| 10 | 1 | 2eximi | |- ( E. x E. y ( x = A /\ y = B ) -> E. x E. y ch ) |
| 11 | 9 10 | syl | |- ( ( A e. V /\ B e. W ) -> E. x E. y ch ) |
| 12 | 2 | biimprcd | |- ( ps -> ( ch -> ph ) ) |
| 13 | 12 | ancld | |- ( ps -> ( ch -> ( ch /\ ph ) ) ) |
| 14 | 13 | 2eximdv | |- ( ps -> ( E. x E. y ch -> E. x E. y ( ch /\ ph ) ) ) |
| 15 | 11 14 | syl5com | |- ( ( A e. V /\ B e. W ) -> ( ps -> E. x E. y ( ch /\ ph ) ) ) |
| 16 | 4 15 | impbid2 | |- ( ( A e. V /\ B e. W ) -> ( E. x E. y ( ch /\ ph ) <-> ps ) ) |