This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfval2 | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ( card ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfval | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) | |
| 2 | fvex | ⊢ ( card ‘ 𝑥 ) ∈ V | |
| 3 | 2 | dfiin2 | ⊢ ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ( card ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) } |
| 4 | df-rex | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ) | |
| 5 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) | |
| 6 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 7 | 6 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) |
| 8 | 5 7 | bitri | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) |
| 9 | 8 | anbi2ci | ⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
| 11 | 4 10 | bitri | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
| 12 | 11 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } |
| 13 | 12 | inteqi | ⊢ ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) } = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } |
| 14 | 3 13 | eqtr2i | ⊢ ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ( card ‘ 𝑥 ) |
| 15 | 1 14 | eqtrdi | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ( card ‘ 𝑥 ) ) |