This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of Enderton p. 257. (Contributed by NM, 26-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cflm | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
| 2 | limsuc | ⊢ ( Lim 𝐴 → ( 𝑣 ∈ 𝐴 ↔ suc 𝑣 ∈ 𝐴 ) ) | |
| 3 | 2 | biimpd | ⊢ ( Lim 𝐴 → ( 𝑣 ∈ 𝐴 → suc 𝑣 ∈ 𝐴 ) ) |
| 4 | sseq1 | ⊢ ( 𝑧 = suc 𝑣 → ( 𝑧 ⊆ 𝑤 ↔ suc 𝑣 ⊆ 𝑤 ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑧 = suc 𝑣 → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤 ) ) |
| 6 | 5 | rspcv | ⊢ ( suc 𝑣 ∈ 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ∃ 𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤 ) ) |
| 7 | sucssel | ⊢ ( 𝑣 ∈ V → ( suc 𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑤 ) ) | |
| 8 | 7 | elv | ⊢ ( suc 𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑤 ) |
| 9 | 8 | reximi | ⊢ ( ∃ 𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤 → ∃ 𝑤 ∈ 𝑦 𝑣 ∈ 𝑤 ) |
| 10 | eluni2 | ⊢ ( 𝑣 ∈ ∪ 𝑦 ↔ ∃ 𝑤 ∈ 𝑦 𝑣 ∈ 𝑤 ) | |
| 11 | 9 10 | sylibr | ⊢ ( ∃ 𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤 → 𝑣 ∈ ∪ 𝑦 ) |
| 12 | 6 11 | syl6com | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ( suc 𝑣 ∈ 𝐴 → 𝑣 ∈ ∪ 𝑦 ) ) |
| 13 | 3 12 | syl9 | ⊢ ( Lim 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ ∪ 𝑦 ) ) ) |
| 14 | 13 | ralrimdv | ⊢ ( Lim 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ∀ 𝑣 ∈ 𝐴 𝑣 ∈ ∪ 𝑦 ) ) |
| 15 | dfss3 | ⊢ ( 𝐴 ⊆ ∪ 𝑦 ↔ ∀ 𝑣 ∈ 𝐴 𝑣 ∈ ∪ 𝑦 ) | |
| 16 | 14 15 | imbitrrdi | ⊢ ( Lim 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 17 | 16 | adantr | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 18 | uniss | ⊢ ( 𝑦 ⊆ 𝐴 → ∪ 𝑦 ⊆ ∪ 𝐴 ) | |
| 19 | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) | |
| 20 | 19 | sseq2d | ⊢ ( Lim 𝐴 → ( ∪ 𝑦 ⊆ 𝐴 ↔ ∪ 𝑦 ⊆ ∪ 𝐴 ) ) |
| 21 | 18 20 | imbitrrid | ⊢ ( Lim 𝐴 → ( 𝑦 ⊆ 𝐴 → ∪ 𝑦 ⊆ 𝐴 ) ) |
| 22 | 21 | imp | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ∪ 𝑦 ⊆ 𝐴 ) |
| 23 | 17 22 | jctird | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ( 𝐴 ⊆ ∪ 𝑦 ∧ ∪ 𝑦 ⊆ 𝐴 ) ) ) |
| 24 | eqss | ⊢ ( 𝐴 = ∪ 𝑦 ↔ ( 𝐴 ⊆ ∪ 𝑦 ∧ ∪ 𝑦 ⊆ 𝐴 ) ) | |
| 25 | 23 24 | imbitrrdi | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 = ∪ 𝑦 ) ) |
| 26 | 25 | imdistanda | ⊢ ( Lim 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) → ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) |
| 27 | 26 | anim2d | ⊢ ( Lim 𝐴 → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) ) |
| 28 | 27 | eximdv | ⊢ ( Lim 𝐴 → ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) ) |
| 29 | 28 | ss2abdv | ⊢ ( Lim 𝐴 → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
| 30 | intss | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) | |
| 31 | 29 30 | syl | ⊢ ( Lim 𝐴 → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 32 | 31 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 33 | limelon | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) | |
| 34 | cfval | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 36 | 32 35 | sseqtrrd | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) ) |
| 37 | cfub | ⊢ ( cf ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } | |
| 38 | eqimss | ⊢ ( 𝐴 = ∪ 𝑦 → 𝐴 ⊆ ∪ 𝑦 ) | |
| 39 | 38 | anim2i | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) → ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) |
| 40 | 39 | anim2i | ⊢ ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) → ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) ) |
| 41 | 40 | eximi | ⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) ) |
| 42 | 41 | ss2abi | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } |
| 43 | intss | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) | |
| 44 | 42 43 | ax-mp | ⊢ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } |
| 45 | 37 44 | sstri | ⊢ ( cf ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } |
| 46 | 36 45 | jctil | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( cf ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ∧ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) ) ) |
| 47 | eqss | ⊢ ( ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ↔ ( ( cf ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ∧ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) ) ) | |
| 48 | 46 47 | sylibr | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
| 49 | 1 48 | sylan | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |