This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. Shorter proof uses df-clab . (Contributed by NM, 18-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsal.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| ceqsal.2 | ⊢ 𝐴 ∈ V | ||
| ceqsal.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ceqsalALT | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsal.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | ceqsal.2 | ⊢ 𝐴 ∈ V | |
| 3 | ceqsal.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 3 | ceqsalg | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| 5 | 2 4 | ax-mp | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) |