This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceilval2 | |- ( A e. RR -> ( |^ ` A ) = ( iota_ y e. ZZ ( A <_ y /\ y < ( A + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( x = A -> ( x <_ y <-> A <_ y ) ) |
|
| 2 | oveq1 | |- ( x = A -> ( x + 1 ) = ( A + 1 ) ) |
|
| 3 | 2 | breq2d | |- ( x = A -> ( y < ( x + 1 ) <-> y < ( A + 1 ) ) ) |
| 4 | 1 3 | anbi12d | |- ( x = A -> ( ( x <_ y /\ y < ( x + 1 ) ) <-> ( A <_ y /\ y < ( A + 1 ) ) ) ) |
| 5 | 4 | riotabidv | |- ( x = A -> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) = ( iota_ y e. ZZ ( A <_ y /\ y < ( A + 1 ) ) ) ) |
| 6 | dfceil2 | |- |^ = ( x e. RR |-> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) ) |
|
| 7 | riotaex | |- ( iota_ y e. ZZ ( A <_ y /\ y < ( A + 1 ) ) ) e. _V |
|
| 8 | 5 6 7 | fvmpt | |- ( A e. RR -> ( |^ ` A ) = ( iota_ y e. ZZ ( A <_ y /\ y < ( A + 1 ) ) ) ) |