This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the second of two single symbols concatenated with a word. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatw2s1p2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ ( 𝑁 + 1 ) ) = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatws1cl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ) | |
| 2 | 1 | ad2ant2r | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ) |
| 3 | simprr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑌 ∈ 𝑉 ) | |
| 4 | ccatws1len | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 6 | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( ♯ ‘ 𝑊 ) + 1 ) = ( 𝑁 + 1 ) ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ♯ ‘ 𝑊 ) + 1 ) = ( 𝑁 + 1 ) ) |
| 8 | 5 7 | eqtr2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 + 1 ) = ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) |
| 9 | ccats1val2 | ⊢ ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ ( 𝑁 + 1 ) = ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ ( 𝑁 + 1 ) ) = 𝑌 ) | |
| 10 | 2 3 8 9 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ ( 𝑁 + 1 ) ) = 𝑌 ) |