This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the symbol of the first singleton word of a word concatenated with this singleton word and another singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 1-May-2020) (Revised by AV, 1-May-2020) (Revised by AV, 29-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatw2s1p1 | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` N ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatws1cl | |- ( ( W e. Word V /\ X e. V ) -> ( W ++ <" X "> ) e. Word V ) |
|
| 2 | 1 | 3adant2 | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> ( W ++ <" X "> ) e. Word V ) |
| 3 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 4 | fzonn0p1 | |- ( ( # ` W ) e. NN0 -> ( # ` W ) e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
|
| 5 | 3 4 | syl | |- ( W e. Word V -> ( # ` W ) e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
| 6 | 5 | adantr | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( # ` W ) e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
| 7 | simpr | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( # ` W ) = N ) |
|
| 8 | 7 | eqcomd | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> N = ( # ` W ) ) |
| 9 | ccatws1len | |- ( W e. Word V -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) |
|
| 10 | 9 | adantr | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) |
| 11 | 10 | oveq2d | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( 0 ..^ ( # ` ( W ++ <" X "> ) ) ) = ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
| 12 | 6 8 11 | 3eltr4d | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> N e. ( 0 ..^ ( # ` ( W ++ <" X "> ) ) ) ) |
| 13 | 12 | 3adant3 | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> N e. ( 0 ..^ ( # ` ( W ++ <" X "> ) ) ) ) |
| 14 | ccats1val1 | |- ( ( ( W ++ <" X "> ) e. Word V /\ N e. ( 0 ..^ ( # ` ( W ++ <" X "> ) ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` N ) = ( ( W ++ <" X "> ) ` N ) ) |
|
| 15 | 2 13 14 | syl2anc | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` N ) = ( ( W ++ <" X "> ) ` N ) ) |
| 16 | simp1 | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> W e. Word V ) |
|
| 17 | simp3 | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> X e. V ) |
|
| 18 | eqcom | |- ( ( # ` W ) = N <-> N = ( # ` W ) ) |
|
| 19 | 18 | biimpi | |- ( ( # ` W ) = N -> N = ( # ` W ) ) |
| 20 | 19 | 3ad2ant2 | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> N = ( # ` W ) ) |
| 21 | ccats1val2 | |- ( ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
|
| 22 | 16 17 20 21 | syl3anc | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
| 23 | 15 22 | eqtrd | |- ( ( W e. Word V /\ ( # ` W ) = N /\ X e. V ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` N ) = X ) |