This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvsbcw when possible. (Contributed by Jeff Hankins, 19-Sep-2009) (Proof shortened by Andrew Salmon, 8-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvsbc.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbvsbc.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvsbc.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvsbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsbc.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbvsbc.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbvsbc.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 2 3 | cbvab | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 } |
| 5 | 4 | eleq2i | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑦 ∣ 𝜓 } ) |
| 6 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 7 | df-sbc | ⊢ ( [ 𝐴 / 𝑦 ] 𝜓 ↔ 𝐴 ∈ { 𝑦 ∣ 𝜓 } ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] 𝜓 ) |