This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variables of quadruple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvral4vw.1 | ⊢ ( 𝑥 = 𝑎 → ( 𝜑 ↔ 𝜒 ) ) | |
| cbvral4vw.2 | ⊢ ( 𝑦 = 𝑏 → ( 𝜒 ↔ 𝜃 ) ) | ||
| cbvral4vw.3 | ⊢ ( 𝑧 = 𝑐 → ( 𝜃 ↔ 𝜏 ) ) | ||
| cbvral4vw.4 | ⊢ ( 𝑤 = 𝑑 → ( 𝜏 ↔ 𝜓 ) ) | ||
| Assertion | cbvral4vw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜑 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral4vw.1 | ⊢ ( 𝑥 = 𝑎 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | cbvral4vw.2 | ⊢ ( 𝑦 = 𝑏 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | cbvral4vw.3 | ⊢ ( 𝑧 = 𝑐 → ( 𝜃 ↔ 𝜏 ) ) | |
| 4 | cbvral4vw.4 | ⊢ ( 𝑤 = 𝑑 → ( 𝜏 ↔ 𝜓 ) ) | |
| 5 | 1 | ralbidv | ⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑤 ∈ 𝐷 𝜑 ↔ ∀ 𝑤 ∈ 𝐷 𝜒 ) ) |
| 6 | 2 | ralbidv | ⊢ ( 𝑦 = 𝑏 → ( ∀ 𝑤 ∈ 𝐷 𝜒 ↔ ∀ 𝑤 ∈ 𝐷 𝜃 ) ) |
| 7 | 3 | ralbidv | ⊢ ( 𝑧 = 𝑐 → ( ∀ 𝑤 ∈ 𝐷 𝜃 ↔ ∀ 𝑤 ∈ 𝐷 𝜏 ) ) |
| 8 | 5 6 7 | cbvral3vw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜑 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜏 ) |
| 9 | 4 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝐷 𝜏 ↔ ∀ 𝑑 ∈ 𝐷 𝜓 ) |
| 10 | 9 | 3ralbii | ⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜏 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 𝜓 ) |
| 11 | 8 10 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜑 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 𝜓 ) |