This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variables of sextuple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 5-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvral6vw.1 | ⊢ ( 𝑥 = 𝑎 → ( 𝜑 ↔ 𝜒 ) ) | |
| cbvral6vw.2 | ⊢ ( 𝑦 = 𝑏 → ( 𝜒 ↔ 𝜃 ) ) | ||
| cbvral6vw.3 | ⊢ ( 𝑧 = 𝑐 → ( 𝜃 ↔ 𝜏 ) ) | ||
| cbvral6vw.4 | ⊢ ( 𝑤 = 𝑑 → ( 𝜏 ↔ 𝜂 ) ) | ||
| cbvral6vw.5 | ⊢ ( 𝑝 = 𝑒 → ( 𝜂 ↔ 𝜁 ) ) | ||
| cbvral6vw.6 | ⊢ ( 𝑞 = 𝑓 → ( 𝜁 ↔ 𝜓 ) ) | ||
| Assertion | cbvral6vw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜑 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑒 ∈ 𝐸 ∀ 𝑓 ∈ 𝐹 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral6vw.1 | ⊢ ( 𝑥 = 𝑎 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | cbvral6vw.2 | ⊢ ( 𝑦 = 𝑏 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | cbvral6vw.3 | ⊢ ( 𝑧 = 𝑐 → ( 𝜃 ↔ 𝜏 ) ) | |
| 4 | cbvral6vw.4 | ⊢ ( 𝑤 = 𝑑 → ( 𝜏 ↔ 𝜂 ) ) | |
| 5 | cbvral6vw.5 | ⊢ ( 𝑝 = 𝑒 → ( 𝜂 ↔ 𝜁 ) ) | |
| 6 | cbvral6vw.6 | ⊢ ( 𝑞 = 𝑓 → ( 𝜁 ↔ 𝜓 ) ) | |
| 7 | 1 | 2ralbidv | ⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜑 ↔ ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜒 ) ) |
| 8 | 2 | 2ralbidv | ⊢ ( 𝑦 = 𝑏 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜒 ↔ ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜃 ) ) |
| 9 | 3 | 2ralbidv | ⊢ ( 𝑧 = 𝑐 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜃 ↔ ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜏 ) ) |
| 10 | 4 | 2ralbidv | ⊢ ( 𝑤 = 𝑑 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜏 ↔ ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜂 ) ) |
| 11 | 7 8 9 10 | cbvral4vw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜑 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜂 ) |
| 12 | 5 6 | cbvral2vw | ⊢ ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜂 ↔ ∀ 𝑒 ∈ 𝐸 ∀ 𝑓 ∈ 𝐹 𝜓 ) |
| 13 | 12 | 4ralbii | ⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜂 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑒 ∈ 𝐸 ∀ 𝑓 ∈ 𝐹 𝜓 ) |
| 14 | 11 13 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜑 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑒 ∈ 𝐸 ∀ 𝑓 ∈ 𝐹 𝜓 ) |