This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative proof of cbveu . Since df-eu combines two other quantifiers, one can base this theorem on their associated 'change bounded variable' kind of theorems as well. (Contributed by Wolf Lammen, 5-Jan-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbveu.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbveu.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbveu.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbveuALT | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbveu.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbveu.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbveu.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 2 3 | cbvex | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) |
| 5 | 1 2 3 | cbvmo | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 𝜓 ) |
| 6 | 4 5 | anbi12i | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑦 𝜓 ∧ ∃* 𝑦 𝜓 ) ) |
| 7 | df-eu | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ) | |
| 8 | df-eu | ⊢ ( ∃! 𝑦 𝜓 ↔ ( ∃ 𝑦 𝜓 ∧ ∃* 𝑦 𝜓 ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 ) |