This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Check out cbvexvw , cbvexv1 for weaker versions requiring fewer axioms. (Contributed by NM, 21-Jun-1993) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbval.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbval.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbval.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvex | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbval.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbval.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 | nfn | ⊢ Ⅎ 𝑦 ¬ 𝜑 |
| 5 | 2 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜓 |
| 6 | 3 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 7 | 4 5 6 | cbval | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 ¬ 𝜓 ) |
| 8 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 9 | alnex | ⊢ ( ∀ 𝑦 ¬ 𝜓 ↔ ¬ ∃ 𝑦 𝜓 ) | |
| 10 | 7 8 9 | 3bitr3i | ⊢ ( ¬ ∃ 𝑥 𝜑 ↔ ¬ ∃ 𝑦 𝜓 ) |
| 11 | 10 | con4bii | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) |