This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbveuw , cbveuvw when possible. (Contributed by NM, 25-Nov-1994) (Revised by Mario Carneiro, 7-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbveu.1 | |- F/ y ph |
|
| cbveu.2 | |- F/ x ps |
||
| cbveu.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbveu | |- ( E! x ph <-> E! y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbveu.1 | |- F/ y ph |
|
| 2 | cbveu.2 | |- F/ x ps |
|
| 3 | cbveu.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 4 | 1 | sb8eu | |- ( E! x ph <-> E! y [ y / x ] ph ) |
| 5 | 2 3 | sbie | |- ( [ y / x ] ph <-> ps ) |
| 6 | 5 | eubii | |- ( E! y [ y / x ] ph <-> E! y ps ) |
| 7 | 4 6 | bitri | |- ( E! x ph <-> E! y ps ) |