This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for catprs . (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catprs.1 | |- ( ph -> A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) ) |
|
| catprslem.x | |- ( ph -> X e. B ) |
||
| catprslem.y | |- ( ph -> Y e. B ) |
||
| Assertion | catprslem | |- ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprs.1 | |- ( ph -> A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) ) |
|
| 2 | catprslem.x | |- ( ph -> X e. B ) |
|
| 3 | catprslem.y | |- ( ph -> Y e. B ) |
|
| 4 | breq1 | |- ( x = z -> ( x .<_ y <-> z .<_ y ) ) |
|
| 5 | oveq1 | |- ( x = z -> ( x H y ) = ( z H y ) ) |
|
| 6 | 5 | neeq1d | |- ( x = z -> ( ( x H y ) =/= (/) <-> ( z H y ) =/= (/) ) ) |
| 7 | 4 6 | bibi12d | |- ( x = z -> ( ( x .<_ y <-> ( x H y ) =/= (/) ) <-> ( z .<_ y <-> ( z H y ) =/= (/) ) ) ) |
| 8 | breq2 | |- ( y = w -> ( z .<_ y <-> z .<_ w ) ) |
|
| 9 | oveq2 | |- ( y = w -> ( z H y ) = ( z H w ) ) |
|
| 10 | 9 | neeq1d | |- ( y = w -> ( ( z H y ) =/= (/) <-> ( z H w ) =/= (/) ) ) |
| 11 | 8 10 | bibi12d | |- ( y = w -> ( ( z .<_ y <-> ( z H y ) =/= (/) ) <-> ( z .<_ w <-> ( z H w ) =/= (/) ) ) ) |
| 12 | 7 11 | cbvral2vw | |- ( A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) <-> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| 13 | 1 12 | sylib | |- ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| 14 | breq12 | |- ( ( z = X /\ w = Y ) -> ( z .<_ w <-> X .<_ Y ) ) |
|
| 15 | oveq12 | |- ( ( z = X /\ w = Y ) -> ( z H w ) = ( X H Y ) ) |
|
| 16 | 15 | neeq1d | |- ( ( z = X /\ w = Y ) -> ( ( z H w ) =/= (/) <-> ( X H Y ) =/= (/) ) ) |
| 17 | 14 16 | bibi12d | |- ( ( z = X /\ w = Y ) -> ( ( z .<_ w <-> ( z H w ) =/= (/) ) <-> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) ) |
| 18 | 17 | rspc2gv | |- ( ( X e. B /\ Y e. B ) -> ( A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) ) |
| 19 | 2 3 18 | syl2anc | |- ( ph -> ( A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) ) |
| 20 | 13 19 | mpd | |- ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) |