This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A construction of the preorder induced by a category. See catprs2 for details. See also catprsc2 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | catprsc.1 | |- ( ph -> .<_ = { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } ) |
|
| Assertion | catprsc | |- ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprsc.1 | |- ( ph -> .<_ = { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } ) |
|
| 2 | 1 | breqd | |- ( ph -> ( z .<_ w <-> z { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } w ) ) |
| 3 | vex | |- z e. _V |
|
| 4 | vex | |- w e. _V |
|
| 5 | simpl | |- ( ( x = z /\ y = w ) -> x = z ) |
|
| 6 | 5 | eleq1d | |- ( ( x = z /\ y = w ) -> ( x e. B <-> z e. B ) ) |
| 7 | simpr | |- ( ( x = z /\ y = w ) -> y = w ) |
|
| 8 | 7 | eleq1d | |- ( ( x = z /\ y = w ) -> ( y e. B <-> w e. B ) ) |
| 9 | oveq12 | |- ( ( x = z /\ y = w ) -> ( x H y ) = ( z H w ) ) |
|
| 10 | 9 | neeq1d | |- ( ( x = z /\ y = w ) -> ( ( x H y ) =/= (/) <-> ( z H w ) =/= (/) ) ) |
| 11 | 6 8 10 | 3anbi123d | |- ( ( x = z /\ y = w ) -> ( ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) <-> ( z e. B /\ w e. B /\ ( z H w ) =/= (/) ) ) ) |
| 12 | df-3an | |- ( ( z e. B /\ w e. B /\ ( z H w ) =/= (/) ) <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) |
|
| 13 | 11 12 | bitrdi | |- ( ( x = z /\ y = w ) -> ( ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) ) |
| 14 | eqid | |- { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } = { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } |
|
| 15 | 3 4 13 14 | braba | |- ( z { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } w <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) |
| 16 | 2 15 | bitrdi | |- ( ph -> ( z .<_ w <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) ) |
| 17 | 16 | baibd | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| 18 | 17 | ralrimivva | |- ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |