This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdir2d.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) ) | |
| caovdir2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| caovdir2d.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| caovdir2d.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | ||
| caovdir2d.cl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 ) | ||
| caovdir2d.com | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) | ||
| Assertion | caovdir2d | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir2d.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) ) | |
| 2 | caovdir2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 3 | caovdir2d.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 4 | caovdir2d.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
| 5 | caovdir2d.cl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 ) | |
| 6 | caovdir2d.com | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) | |
| 7 | 1 4 2 3 | caovdid | ⊢ ( 𝜑 → ( 𝐶 𝐺 ( 𝐴 𝐹 𝐵 ) ) = ( ( 𝐶 𝐺 𝐴 ) 𝐹 ( 𝐶 𝐺 𝐵 ) ) ) |
| 8 | 5 2 3 | caovcld | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |
| 9 | 6 8 4 | caovcomd | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( 𝐶 𝐺 ( 𝐴 𝐹 𝐵 ) ) ) |
| 10 | 6 2 4 | caovcomd | ⊢ ( 𝜑 → ( 𝐴 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐴 ) ) |
| 11 | 6 3 4 | caovcomd | ⊢ ( 𝜑 → ( 𝐵 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐵 ) ) |
| 12 | 10 11 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐶 𝐺 𝐴 ) 𝐹 ( 𝐶 𝐺 𝐵 ) ) ) |
| 13 | 7 9 12 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) ) |