This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovdirg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) | |
| Assertion | caovdirg | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdirg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) | |
| 2 | 1 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝐾 ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) |
| 3 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐹 𝑦 ) 𝐺 𝑧 ) ) |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑧 ) = ( 𝐴 𝐺 𝑧 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝐴 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) |
| 7 | 4 6 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝑧 ) ) |
| 10 | oveq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝐺 𝑧 ) = ( 𝐵 𝐺 𝑧 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝐴 𝐺 𝑧 ) 𝐻 ( 𝐵 𝐺 𝑧 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝑧 ) 𝐻 ( 𝐵 𝐺 𝑧 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝐺 𝑧 ) = ( 𝐴 𝐺 𝐶 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐵 𝐺 𝑧 ) = ( 𝐵 𝐺 𝐶 ) ) | |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐺 𝑧 ) 𝐻 ( 𝐵 𝐺 𝑧 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) |
| 17 | 13 16 | eqeq12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝑧 ) 𝐻 ( 𝐵 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) ) |
| 18 | 7 12 17 | rspc3v | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝐾 ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) ) |
| 19 | 2 18 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) |